博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
美国数学月刊征解题
阅读量:5894 次
发布时间:2019-06-19

本文共 6861 字,大约阅读时间需要 22 分钟。

(2017年10月AMM征解题)求证

\[\prod\limits_{j \ge 1} {
{e^{ - 1/j}}\left( {1 + \frac{1}{j} + \frac{1}{
{2{j^2}}}} \right)} = \frac{
{
{e^{\pi /2}} + {e^{ - \pi /2}}}}{
{\pi {e^\gamma }}}.\]


 记

\[{x_n} = \prod\limits_{k = 1}^n {\left( {1 + \frac{1}{k} + \frac{1}{

{2{k^2}}}} \right)} = \prod\limits_{k = 1}^n {\frac{
{
{
{\left( {2k + 1} \right)}^2} + 1}}{
{
{
{\left( {2k} \right)}^2}}}} ,\]
\begin{align*}
\frac{
{\prod\limits_{k = 1}^{2n} {\left( {1 + \frac{1}{
{
{k^2}}}} \right)} }}{
{
{x_n}}} &= \frac{
{\prod\limits_{k = 1}^{2n} {\frac{
{
{k^2} + 1}}{
{
{k^2}}}} }}{
{\prod\limits_{k = 1}^n {\frac{
{
{
{\left( {2k + 1} \right)}^2} + 1}}{
{
{
{\left( {2k} \right)}^2}}}} }} = \frac{
{\left( {
{1^2} + 1} \right)\left( {
{2^2} + 1} \right)\left( {
{4^2} + 1} \right) \cdots \left[ {
{
{\left( {2n} \right)}^2} + 1} \right]}}{
{
{1^2}{3^2} \cdots {
{\left( {2n - 1} \right)}^2}\left[ {
{
{\left( {2n + 1} \right)}^2} + 1} \right]}}\\
&= 2\prod\limits_{k = 1}^n {\left( {1 + \frac{1}{
{4{k^2}}}} \right) \cdot } {\left[ {\frac{
{\left( {2n} \right)!!}}{
{\left( {2n - 1} \right)!!}}} \right]^2}\frac{1}{
{4{n^2} + 4n + 2}},
\end{align*}
由Wallis公式可知
\[\mathop {\lim }\limits_{n \to \infty } {\left[ {\frac{
{\left( {2n} \right)!!}}{
{\left( {2n - 1} \right)!!}}} \right]^2}\frac{1}{
{2n + 1}} = \frac{\pi }{2}.\]
由$\mathrm{sinh} x$的无穷乘积
\[\frac{
{\sinh \left( {\pi x} \right)}}{
{\pi x}} = \prod\limits_{k = 1}^\infty {\left( {1 + \frac{
{
{x^2}}}{
{
{k^2}}}} \right)} \]
可知
\[\prod\limits_{k = 1}^\infty {\left( {1 + \frac{1}{
{
{k^2}}}} \right)} = \frac{
{
{e^\pi } - {e^{ - \pi }}}}{
{2\pi }},\quad \prod\limits_{k = 1}^\infty {\left( {1 + \frac{1}{
{4{k^2}}}} \right)} = \frac{
{
{e^{\pi /2}} - {e^{ - \pi /2}}}}{\pi },\]
而调和数列
\[{H_n} = \sum\limits_{k = 1}^n {\frac{1}{k}} = \ln n + \gamma + o\left( 1 \right),\]
\[\mathop {\lim }\limits_{n \to \infty } n\prod\limits_{k = 1}^n {
{e^{ - 1/k}}} = {e^{ - \gamma }}.\]
因此所求积分为
\[\frac{
{\frac{
{
{e^\pi } - {e^{ - \pi }}}}{
{2\pi }}}}{
{
{e^\gamma } \times \frac{\pi }{2} \times \frac{
{
{e^{\pi /2}} - {e^{ - \pi /2}}}}{\pi }}} = \frac{
{
{e^{\pi /2}} + {e^{ - \pi /2}}}}{
{\pi {e^\gamma }}}.\]

事实上,我们还有

\begin{align*}
\cosh \left( {\pi x} \right) &= \prod\limits_{n = 1}^\infty {\left( {1 + \frac{
{4{x^2}}}{
{
{
{\left( {2n - 1} \right)}^2}}}} \right)} ,&\frac{
{\sinh \left( {\pi x} \right)}}{
{\pi x}} &= \prod\limits_{n = 1}^\infty {\left( {1 + \frac{
{
{x^2}}}{
{
{n^2}}}} \right)} ,\\
\cos \left( {\pi x} \right) &= \prod\limits_{n = 1}^\infty {\left( {1 - \frac{
{4{x^2}}}{
{
{
{\left( {2n - 1} \right)}^2}}}} \right)} ,&\frac{
{\sin \left( {\pi x} \right)}}{
{\pi x}} &= \prod\limits_{n = 1}^\infty {\left( {1 - \frac{
{
{x^2}}}{
{
{n^2}}}} \right)} ,
\end{align*}

另外

\begin{align*}
\sqrt 2 \sin \left( {\frac{
{x + 1}}{4}\pi } \right) &= \prod\limits_{n = 0}^\infty {\left( {1 + \frac{
{
{
{\left( { - 1} \right)}^n}x}}{
{2n + 1}}} \right)} ,\\
\sqrt {x + 1} \sin \left( {\frac{
{\sqrt {x + 1} }}{2}\pi } \right) &= \prod\limits_{n = 0}^\infty {\left( {1 - \frac{x}{
{4{n^2} - 1}}} \right)} ,\\
- \sqrt {x - 1} \mathrm{csch}\left( {\frac{\pi }{2}} \right)\sin \left( {\frac{
{\sqrt {x - 1} }}{2}\pi } \right) &= \prod\limits_{n = 0}^\infty {\left( {1 - \frac{x}{
{4{n^2} + 1}}} \right)} ,\\
- \sqrt { - x - 1} \mathrm{csch}\left( {\frac{\pi }{
{\sqrt a }}} \right)\sin \left( {\frac{
{\sqrt { - x - 1} }}{
{\sqrt a }}\pi } \right) &= \prod\limits_{n = 0}^\infty {\left( {1 + \frac{x}{
{a{n^2} + 1}}} \right)} ,\\
\frac{
{
{e^{ - \gamma x}}}}{
{\Gamma \left( {1 + x} \right)}} &= \prod\limits_{n = 1}^\infty {\frac{
{1 + x/n}}{
{
{e^{x/n}}}}},
\end{align*}

对于求和,我们有
\begin{align*}
\sum\limits_{n = 1}^\infty {\frac{1}{
{
{n^2} - {x^2}}}} &= \frac{1}{
{2{x^2}}} - \frac{\pi }{
{2x}}\cot \left( {\pi x} \right),&&\left| x \right| < \infty \\
\sum\limits_{n = 1}^\infty {\frac{1}{
{
{
{\left( {
{n^2} - {x^2}} \right)}^2}}}} &= - \frac{1}{
{2{x^4}}} - \frac{
{
{\pi ^2}}}{
{4{x^2}}}\mathrm{csc}^2\left( {\pi x} \right) + \frac{\pi }{
{4{x^3}}}\cot \left( {\pi x} \right),&&\left| x \right| < \infty \\
\sum\limits_{n = 1}^\infty {\frac{1}{
{
{
{\left( {2n - 1} \right)}^2} - {x^2}}}} &= \frac{\pi }{
{4x}}\tan \left( {\frac{\pi }{2}x} \right),&& \left| x \right| < \infty \\
\sum\limits_{n = 1}^\infty {\frac{1}{
{
{
{\left[ {
{
{\left( {2n - 1} \right)}^2} - {x^2}} \right]}^2}}}} &= \frac{
{
{\pi ^2}}}{
{16{x^2}}}\sec \left( {\frac{\pi }{2}x} \right) - \frac{\pi }{
{8{x^3}}}\tan \left( {\frac{\pi }{2}x} \right),&&\left| x \right| < \infty \\
\sum\limits_{n = 1}^\infty {\frac{1}{
{
{n^2} + {x^2}}}} &= \frac{\pi }{
{2x}}\coth \left( {\pi x} \right) - \frac{1}{
{2{x^2}}}, &&\left| x \right| < \infty\\
\sum\limits_{n = 1}^\infty {\frac{1}{
{
{
{\left( {2n - 1} \right)}^2} + {x^2}}}} &= \frac{\pi }{
{4x}}\tanh \left( {\frac{\pi }{2}x} \right),&&\left| x \right| < \infty
\end{align*}
其中$\mathrm{sinh}x=\frac{e^x-e^{-x}}2,\mathrm{cosh}x=\frac{e^x+e^ {-x}}2,\mathrm{csch}x=\frac2{e^x-e^ {-x}},\mathrm{tanh}x=\frac{e^x-e^ {-x}}{e^x+e^ {-x}},\mathrm{coth}x=\frac{e^x+e^ {-x}}{e^x-e^ {-x}}$.

The Weierstrass factorization theorem. Sometimes called the Weierstrass product/factor theorem.

Let $f$ be an entire function, and let $\{a_n\}$ be the non-zero zeros of $ƒ$ repeated according to multiplicity; suppose also that $ƒ''$ has a zero at $z= 0$ of order $m\geq 0$ (a zero of order $m=0$ at $z=0$ means $f(0)\neq 0$.

Then there exists an entire function $g$ and a sequence of integers $\{p_n\}$ such that

\[f(z)=z^m e^{g(z)} \prod_{n=1}^\infty E_{p_n}\left(\frac{z}{a_n}\right).\]

====Examples of factorization====

\begin{align*}\sin \pi z &= \pi z \prod_{n\neq 0} \left(1-\frac{z}{n}\right)e^{z/n} = \pi z\prod_{n=1}^\infty \left(1-\left(\frac{z}{n}\right)^2\right)\\\cos \pi z &= \prod_{q \in \mathbb{Z}, \, q \; \text{odd} } \left(1-\frac{2z}{q}\right)e^{2z/q} = \prod_{n=0}^\infty \left( 1 - \left(\frac{z}{n+\tfrac{1}{2}} \right)^2 \right) \end{align*}

The cosine identity can be seen as special case of

\[\frac{1}{\Gamma(s-z)\Gamma(s+z)} = \frac{1}{\Gamma(s)^2}\prod_{n=0}^\infty \left( 1 - \left(\frac{z}{n+s} \right)^2 \right)\]
for $s=\tfrac{1}{2}$.

Mittag-Leffler's theorem.

== Pole expansions of meromorphic functions ==

Here are some examples of pole expansions of meromorphic functions:

\begin{align*}\frac{1}{\sin(z)}&= \sum_{n \in \mathbb{Z}} \frac{(-1)^n}{z-n\pi}= \frac{1}{z} + 2z\sum_{n=1}^\infty (-1)^n \frac{1}{z^2 - (n\,\pi)^2},\\\cot(z) &\equiv \frac{\cos (z)}{\sin (z)}= \sum_{n \in \mathbb{Z}} \frac{1}{z-n\pi}= \frac{1}{z} + 2z\sum_{k=1}^\infty \frac{1}{z^2 - (k\,\pi)^2},\\\frac{1}{\sin^2(z)} &= \sum_{n \in \mathbb{Z}} \frac{1}{(z-n\,\pi)^2},\\

\frac{1}{z \sin(z)}&= \frac{1}{z^2} + \sum_{n \neq 0} \frac{(-1)^n}{\pi n(z-\pi n)}= \frac{1}{z^2} + \sum_{n=1}^\infty \frac{(-1)^n}{n\,\pi} \frac{2z}{z^2 - (n\,\pi)^2}.\end{align*}

转载于:https://www.cnblogs.com/Eufisky/p/7751105.html

你可能感兴趣的文章
10条命令,1分钟时间检查Linux服务器性能
查看>>
python一个发邮件的函数
查看>>
mailto用法
查看>>
编程如何入门(创世纪新篇)
查看>>
EIGRP产生默认路由的方法
查看>>
php转义和正则问题
查看>>
Spring源码阅读--@Autowired注解自动装配
查看>>
Integrating Perl REST service with jQuery and a da
查看>>
给普通用户像ROOT用户一样权限!
查看>>
【MySQL】【安全】探讨MySQL备份所需最小权限
查看>>
各项异性过滤
查看>>
jfinal3.0+easyui1.4.4后台权限管理系统 [2017.2.11 更新]
查看>>
centos7安装telnet服务
查看>>
运维监控之Nagios实战(四)&Nagios报警
查看>>
Myeclipse2014中,新建部署Maven项目
查看>>
eclipse老是building workspace及自动更新问题
查看>>
【VMCloud云平台】SCAP(一)规划
查看>>
Tomcat启动报错:java.lang.IllegalArgumentException: Can't convert argument:null
查看>>
你好,blog!
查看>>
SQL SERVER 2008数据库的安全
查看>>